Poisoning Overview

This guideline provides an outline of the general approach to poisoning. Specific information about poisoning presentations can be obtained from Poisons Information: 131126 or refer to the Toxicology Handbook.

Background

- The vast majority of morbidity and mortality in toxicology arises from complication of the poisoning not the poisoning itself, particularly
 - Aspiration due to sedation
 - Urinary retention
- Good supportive care is the best way to prevent this
- Poisonings follow a highly predictable path
- Risk assessment is an essential cognitive step during assessment that outlines ongoing care
- If information is unclear always base the risk assessment upon a “worse case scenario”
- Know your list of “2 pills can kill” in a toddler.
 - Most accidental paediatric ingestions are only 1-2 tablets and a risk assessment will be low. Nevertheless, there are some toxins which can kill a young child with a very small exposure. These should be aggressively managed with early senior advice and/or Toxicology service input.

- The general approach to all poisonings should follow the “RRSIDEAD” format

R Resuscitation
R Risk Assessment
S Supportive Care
I Investigations
Management

Resuscitation

Follow traditional ABC approach with modification

- Airway
- Breathing
- Circulation
- Control/Correct
 - Seizures with midazolam (phenytoin contraindicated)
 - Hypothermia
 - Hyperthermia
 - Temperature > 38.5° requires core monitoring
 - Temperature > 39.5° is an indication for intubation, ventilation and paralysis

Risk Assessment

The following five factors will provide an accurate prediction of clinical course, potential complications and time course of poisoning to direct management.

- Agent/s
- Dose
- Time of ingestion
 - Use the latest possible time if uncertain
- Patient factors
 - Weight
 - Comorbidities that may affect prognosis, for example:
 - Heart disease complicating calcium channel overdose
 - Morbid obesity affecting airway patency
- Clinical status (features and progress)
 - Agents commonly affect the autonomic, CNS and neuromuscular systems and may produce a recognisable “toxidrome”
 - Does the clinical presentation of the patient fit with the predictable profile of the overdose?

<table>
<thead>
<tr>
<th>Anticholinergic</th>
<th>Sympathomimetic</th>
<th>Serotonergic</th>
</tr>
</thead>
</table>

Examples

<table>
<thead>
<tr>
<th>Examples</th>
<th>Antihistamines</th>
<th>Street amphetamines</th>
<th>SSRIs/SNRIs</th>
<th>TCAs</th>
<th>MAOi</th>
<th>MNDA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anaphylaxis</td>
<td>Amphetamines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autonomic Vital Signs

Temperature	Elevated	Elevated	Elevated
Pupils	Dilated	Dilated	Dilated
Skin/Mucous	Flushed, Dry	Flushed, Sweaty	Flushed, Sweaty

CNS Mental Status

| Mental Status | Agitated delirium | Euphoria, Agitated | Agitated, Coma |
| Seizures | Rarely | Yes | Yes |

Neuromuscular Tone

| Tone | Normal | Increased/Rigidity | Increased/Rigidity |
| Reflexes | Normal | Hyperreflexic | Hyperreflexic/clonus |

Complications

<table>
<thead>
<tr>
<th>Complications</th>
<th>Urinary retention</th>
<th>Severe hypertension</th>
<th>Dysrhythmias</th>
<th>Myocardial infarction</th>
<th>Pulmonary edema</th>
<th>Rhabdomyolysis</th>
<th>Hyponatremia</th>
<th>SAH</th>
</tr>
</thead>
</table>

Supportive Care and Monitoring

- Supportive care is tailored to the risk assessment and may involve:
 - IV hydration
 - Control of agitation and seizures with titrated benzodiazepines
 - Ensuring normoglycaemia
 - Bladder care (especially monitoring for urinary retention)

Investigations

Investigations are done for either specific purposes, to identify occult overdoses, or specific tests to determine the presence or level of a known ingestant

Screening

- 12 lead ECG
 - Wide QRS (sodium channel blockade)
 - Long QT (potassium channel blockade, anti-psychotic overdose)
 - Heart blocks (calcium channel and beta blockers/calcium channel poisoning
- Serum Paracetamol level (4 hours)
- Blood glucose level (BGL)

Specific
• **Drug levels**
 ◦ Paracetamol (in known ingestion)
 ◦ Iron
 ◦ Alcohols
 ◦ Lithium
 ◦ Salicylate
 ◦ Theophylline
 ◦ Anti-epileptics
 ◦ Others

Other adjunctive tests as indicated:

• **Blood gas:**
 ◦ High anion gap metabolic acidosis
 ▪ TCA
 ▪ Salicylates (late)
 ▪ Iron
 ▪ Toxic alcohol
 ▪ Metformin
 ◦ Respiratory alkalosis
 ▪ Salicylates
 ◦ Respiratory acidosis
 ▪ Sedatives

• **Abdominal X-Ray:**
 ◦ Confirmation of iron or other heavy metal ingestion

• **Blood tests:**
 ◦ LFT (delayed paracetamol)
 ◦ UEC
 ◦ INR (Warfarin, delayed paracetamol)

Decontamination

• Consider but rarely required
 ◦ **Activated charcoal**
 ▪ Will not bind to hydrocarbons or alcohol, corrosives and metals
 ▪ Reserved for life threatening intoxications in which other measures are not expected to result in a good outcome
 ▪ **Contraindicated in un-intubated patient** if decreased conscious level, vomiting or seizures are expected
 ▪ Can be considered where the toxin is likely to remain in the gastrointestinal tract (generally within the first hour post ingestion for most agents)
 ◦ Other methods: e.g. **whole bowel irrigation** - should not be instigated in the ED and should only be commenced on advice of Poisons Information
Enhanced Elimination

- Consider but rarely required
 - Techniques include: multiple dose activated charcoal, urinary alkalinisation, haemodialysis, haemofiltration, charcoal haemoperfusion

Antidotes

- The risk assessment should determine if the potential benefit outweighs the possible adverse effects of the antidote

<table>
<thead>
<tr>
<th>Antidote</th>
<th>Poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-acetylcysteine</td>
<td>Paracetamol</td>
</tr>
<tr>
<td>Naloxone</td>
<td>Opiates</td>
</tr>
<tr>
<td>Flumazenil</td>
<td>Benzodiazepines</td>
</tr>
<tr>
<td>Desferrioxamine</td>
<td>Iron</td>
</tr>
<tr>
<td>Sodium Bicarbonate</td>
<td>TCAs</td>
</tr>
</tbody>
</table>

Disposition

- The disposition will be determined by:
 - The clinical risk assessment of the overdose
 - The psychiatric safety of the patient (for deliberate overdoses)
 - Other safety factors (parental neglect or drug use, domestic issues)
- Children should not be discharged home at night unless the risk assessment determines that the overdose is trivial and not requiring any form of observation

Discharge home with parental supervision:

- Trivial overdose with no requirement for observation
- Ensure safety issues such as accessibility to tablets are addressed and provide parents with Kidsafe WA Poisoning Fact Sheet
- Low risk overdose with minimal potential for deterioration during day-time hours
- Parents must be able to return to ED in the event of deterioration

Emergency observation ward

- Stable patient with low-risk overdose requiring observation
- Low risk overdose with minimal potential for deterioration during night hours

Medical ward

- Stable patient requiring medical or antidote therapy
• Any suspicion of NAI

PICU

• Unstable or intubated patient

Psychiatric Ward

• Medically cleared patient deemed at risk of deliberate self harm

Nursing

• Baseline observations include heart rate, respiratory rate, oxygen saturation, blood pressure and neurological observations
• Minimum of hourly observations should be recorded whilst in the emergency department
 ○ Any significant changes should be reported immediately to the medical team
• Nursing care specific to the presentation

<table>
<thead>
<tr>
<th>Two Tablets - Potentially Lethal to a 10kg Child</th>
<th>Principle Features of Severe Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent</td>
<td>Principle Features of Severe Toxicity</td>
</tr>
<tr>
<td>Amphetamines</td>
<td>Agitation, Confusion, Hypertension, Hyperthermia</td>
</tr>
<tr>
<td>• Amphetamine</td>
<td></td>
</tr>
<tr>
<td>• Metamphetamine</td>
<td></td>
</tr>
<tr>
<td>• MDMA (ecstacy)</td>
<td></td>
</tr>
<tr>
<td>Baclofen</td>
<td>Coma</td>
</tr>
<tr>
<td>Calcium Channel Blockers</td>
<td>Delayed onset of bradycardia, Hypotension, Conduction defects, Refractory shock</td>
</tr>
<tr>
<td>• Diltiazem CD</td>
<td></td>
</tr>
<tr>
<td>• Verapamil SR</td>
<td></td>
</tr>
<tr>
<td>Chloroquine Hydrochloroquine</td>
<td>Rapid onset of coma, Seizures, Cardiovascular collapse</td>
</tr>
<tr>
<td>Dextropropoxyphene</td>
<td>Ventricular tachycardia</td>
</tr>
<tr>
<td>Opioids</td>
<td>Coma, respiratory arrest, Note: May be delayed with diphenoxylate/atropine and controlled release morphine</td>
</tr>
<tr>
<td>• Oxycodone</td>
<td></td>
</tr>
<tr>
<td>• Methadone</td>
<td></td>
</tr>
<tr>
<td>• Morphine Sulphate</td>
<td></td>
</tr>
<tr>
<td>• Diphenoxylate/Atropine</td>
<td></td>
</tr>
<tr>
<td>Propranolol</td>
<td>Coma, Seizures, Ventricular tachycardia, Hypoglycaemia</td>
</tr>
</tbody>
</table>
Sulfonylureas
- Glibenclamide
- Glibenclamide/Metformin
- Gliclazide
- Glimepiride

Hypoglycaemia
Note: Onset may be delayed up to eight hours.

Theophylline
Seizures
Supraventricular tachycardia
Vomiting

Tricyclic antidepressants
- Dothiepin

Coma
Seizures
Hypotension
Ventricular tachycardia

Venlafaxine XR
Seizures

Non-pharmaceutical agents considered potentially lethal to children\(^2\)

<table>
<thead>
<tr>
<th>Agent</th>
<th>Dose of concern for a 10kg child</th>
<th>Clinical Effects</th>
</tr>
</thead>
</table>
| **Organophosphate and carbamate insecticides** | Single sip | Cholinergic symptoms
Seizures
Depressed level of consciousness |
| **Paraquat/Diquat** | Sip | Oro-pharyngeal burns
Multiple organ failure
Pulmonary fibrosis |
| **Hydrocarbons** | Sip | Rapid depressed level of consciousness
Seizures
Aspiration pneumonia |
 - Solvents
 - Eucalyptus oil
 - Kerosene
| **Camphor** | 5mL of 100% | Rapid depressed level of consciousness
Seizures
Hypotension |
| **Corrosives** | | Gastro-oesophageal injury including perforation |
 - Sodium hydroxide
 - Strong acids |
| **Naphthalene** | One mothball
NB: Most mothballs contain paradichlorobenzene, which is non-toxic after a single accidental ingestion | Methaemoglobinaemia
Haemolysis |
| **Strychnine** | | Rapid onset of generalised muscle spasm
Death by respiratory failure |
References